	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	0	0	3	2	2	1	1	0	2
CO2	2	1	1	0	0	3	1	2	1	1	0	2
CO3	2	1	3	0	0	2	1	1	2	2	1	1
CO4	2	0	1	1	2	2	2	1	1	1	0	2
CO5	2	1	2	0	1	2	2	1	1	1	0	2

Course Objectives for Science of Living Systems:

- 1. Knowing basic concepts of biology with their application in more meaningful way
- 2. Understanding natural biological processes in view of increasing efficiency of engineering
- 3. Discussion on biological solutions resolving problems caused by technical revolution Introduction of concept of designs and environmental engineering to Civil engineers

4a. Introduction of biomaterials and nanomaterials to Metallurgy and Material Engineering.

4b. Introduction of biomechanics to Mechanical Engineering.

4c. Introduction of cell to cell communication and biosensors to Electronics and Telecommunication Engineering.

4d. Introduction of bioinformatics and computational biology to Computer Science and Information Technology.

4e. Introduction of biomedical instrumentation and bioimaging (ECG/EEG/CT Scan etc.) to Instrumentation & Control Technology and Electrical Engineering.

5. Introduction of interdisciplinary topics like energy transduction, cellular evolution, genetic, tissue and chemical engineering.

Program outcomes (POs)-12 Graduate Attributes

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

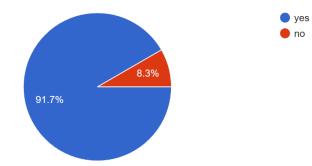
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

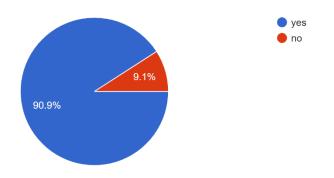
10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear

instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

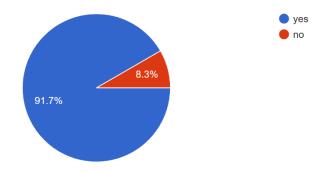

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

Course	Description
Objective	
CO-1	Knowing basic concepts of biology with their application in more meaningful
	way
CO-2	Understanding natural biological processes in view of increasing efficiency of engineering
CO-3	Discussion on biological solutions resolving problems caused by technical revolution
CO-4	Understanding use of engineering and technology in biology in branch specific manner
CO-5	Introduction of interdisciplinary topics like energy transduction, cellular evolution, genetic, tissue and chemical engineering.

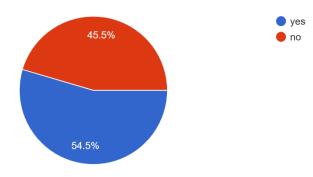

Exit Survey Response 2017-18:

12 responses

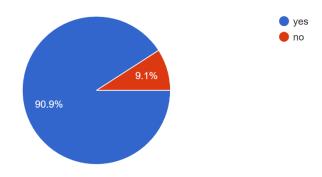
Q1. Do you feel that the course Science of Living of Systems highlights engineering principles in living systems?



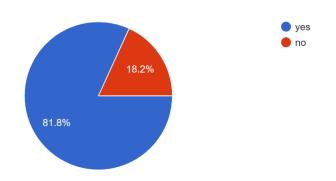
Q2. Are you of the opinion that Biology and Engineering domains have crosstalk? 11 responses



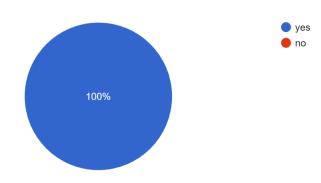
Q3. Have you realized that this course has re-framed your understanding about biological systems from engineering perspective


12 responses

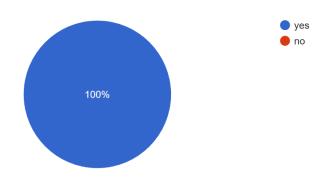
Q4. Does this course link basic biological information about to the engineering concept of molecules polymers?

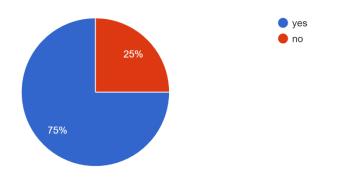


Q5. Does this course describe energy conservation optimised in biological systems through the process of photosynthesis and respiration? 11 responses

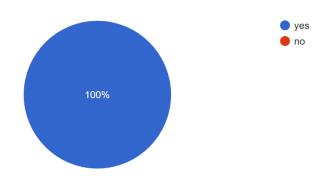


Q6. Can recent advancements and technologies like genetic engineering optimise plants, animals and microorganisms


11 responses


Q7. Do you think transport, communication and defense mechanisms of living systems inspires engineering research

Q8. Could you appreciate that a part of this course offers discussion of biology related technologies in a branch specific manner 12 responses



Q9. Did you find branch specific assignments of this course as opportunities for updating knowledge and enhancing teamwork? 12 responses

Q10. Did you think to certain extent, basic information about biology is necessary for every engineer?

(Indirect) CO attainment for 2017-18

Sr No	Questions	% attained	Target	%attained * weightage for
	mapped to			Indirect assessment
	СО			
CO-1	1, 4	73.1	60	
CO-2	2, 5	90.9	60	
CO-3	3,7	95.4	60	
CO-4	8,9	87.5	60	
CO-5	6,10	90.9	60	

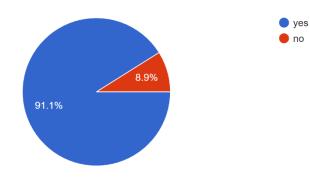
(Direct) CO Attainment (2017-18)

Course attainment with different evaluation modules

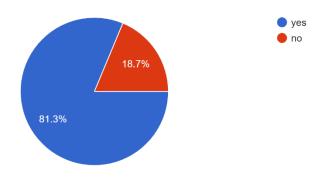
Course Outcome	Assessme	nt	Marks		Weig Tota	ghtage I	Results
CO-1	Test I, ESE		30	30			Y
CO-2	ESE		10		10		Y
CO-3	ESE		10		10		Υ
CO-4	ESE		10		10		Υ
CO-5	ESE, Test I		10	10		_	Υ
Course outcome	AAK (Mech I, Comp, IT)	MRS (Pro Mec Inst	d, ch II	MKR (Civil, Electrical, Meta)		Total (average)	
CO-1	73.4%	79.2	2%	74.169	%	75.58%	
CO-2	71.8%	68.1	.%	72.339	%	70.74%	
CO-3	66.66%	76.0)7%	71.579	%	71.4%	
CO-4	68.2%	72.1	.8%	67.21%		69.19%	
CO-5	75.75%	69.6	6%	66.225	%	70.54%	

Course Outcome Assessment

СО	Test 1	Test 2	ESE
Assessment			
CO-1	Q 1	-	Q1
CO-2	-	-	Q2
CO-3	-	-	Q3
CO-4	-	-	Q4
CO-5	-	Q 2	Q5

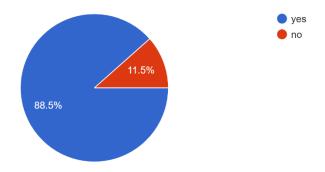

CO attainment (Direct and Indirect) 2017-18

calculation with direct and indirect weightage

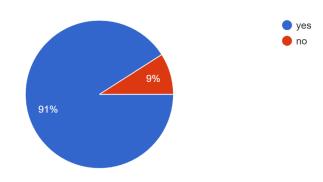

Со	T1+T2+ESE *	Exit survey	Final CO	Target
	0.8	responses*	attained	achievement
		0.2		60%
CO-1	75.58 X 0.8	73.1 X 0.2	75.08	Attained
CO-2	70.74 X 0.8	90.9 X 0.2	74.77	Attained
CO-3	71.4 X 0.8	95.4 X 0.2	76.2	Attained
CO-4	69.19 X 0.8	87.5 X 0.2	67.83	Attained
CO-5	70.54 X 0.8	90.9 X 0.2	73.53	Attained

Exit Survey 2018-19: 157 responses

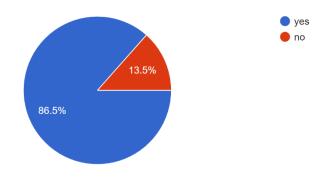
Q1. Do you feel that the course Science of Living of Systems highlights engineering principles in living systems?



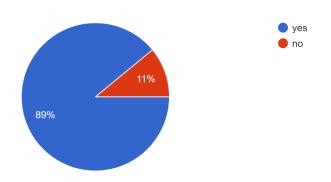
Q2. Are you of the opinion that Biology and Engineering domains have crosstalk? ¹⁵⁵ responses



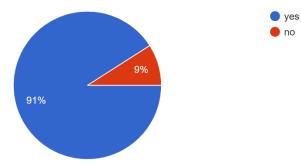
Q3. Have you realized that this course has re-framed your understanding about biological systems from engineering perspective


156 responses

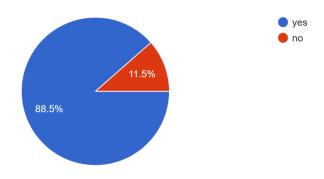
Q4. Does this course link basic biological information about to the engineering concept of molecules polymers? 155 responses



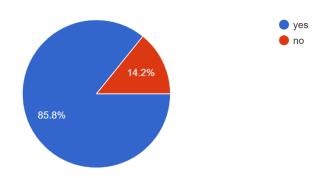
Q5. Does this course describe energy conservation optimised in biological systems through the process of photosynthesis and respiration? ¹⁵⁶ responses

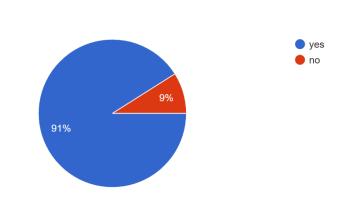

Q6. Can recent advancements and technologies like genetic engineering optimise plants, animals and microorganisms

155 responses



Q7. Do you think transport, communication and defense mechanisms of living systems inspires engineering research




Q8. Could you appreciate that a part of this course offers discussion of biology related technologies in a branch specific manner 157 responses

Q9. Did you find branch specific assignments of this course as opportunities for updating knowledge and enhancing teamwork? 155 responses

Q10. Did you think to certain extent, basic information about biology is necessary for every engineer?

156 responses

(Indirect) CO attainment for 2018-19

Sr No	Questions	% attained	Target	%attained * weightage for
	mapped to			Indirect assessment
	СО			
CO-1	1, 4	91.05	60	
CO-2	2, 5	83.9	60	
CO-3	3,7	89.75	60	
CO-4	8,9	87.15	60	
CO-5	6,10	90	60	

(Direct) CO attainment (2018-19)

CO Assessment with different evaluation modes

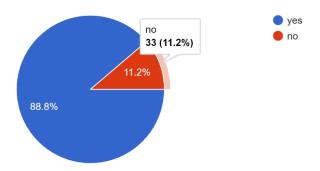
Course	Assessme	nt	Marks		Wei Tota	ghtage	Results	
Outcome		_				1		
CO a	Test I, ESE		30		30		Y	
CO b	ESE		10		10		Y	
CO c	ESE		10		10		Υ	
CO d	ESE		10		10		Y	
CO e	ESE, Test		10		10		Y	
Course outcome	KDK (Comp, IT, ENTC)	AAK (Mech I-II, Meta)		MRS (Prod <i>,</i> Instru)		MKR (Civil, Electrical)	Total (average)	
CO-1	72.22%	87.7	5%	79.2%		80.33%	79.88%	
CO-2	56.16%	69.7	5%	65.33%	%	71.66%	65.73%	
CO-3	60.83%	69%		74.5%		69.57%	68.48%	
CO-4	63.33%	75.75%		66.5%		62%	66.90%	
CO-5	62.5%	64.3	3%	76%		67.22%	67.51%	

Course Outcome Assessment

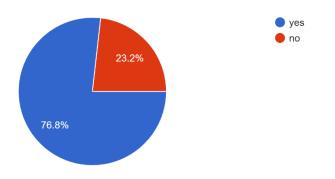
СО	Test 1	Test 2	ESE
Assessment			
CO-1	Q 1	-	Q1
CO-2	-	-	Q2
CO-3	-	-	Q3
CO-4	-	-	Q4

CO-5 - Q.2 Q.5

CO attainment (Direct and Indirect) 2018-19

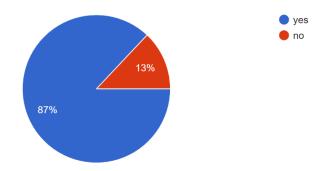

CO attainment calculation with direct and indirect weightage

Со	T1+T2+ESE *	Exit survey	Final CO	Target
	0.8	responses*	attained	achievement
		0.2		60%
CO-1	79.88 X 0.8	91.05 X 0.2	82.1	Attained
CO-2	65.73 X 0.8	83.9 X 0.2	69.28	Attained
CO-3	68.48 X 0.8	89.75 X 0.2	72.73	Attained
CO-4	66.90 X 0.8	87.15 X 0.2	70.43	Attained
CO-5	67.51 X 0.8	90 X 0.2	70.008	Attained

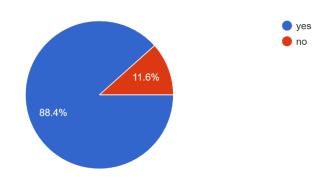

Exit Survey 2019-20:

294 responses

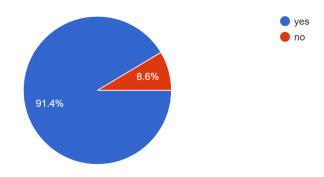
Q1. Do you feel that the course Science of Living of Systems highlights engineering principles in living systems? ²⁹⁴ responses



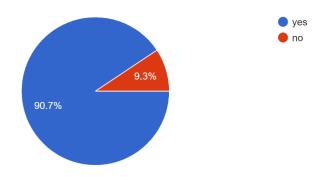
Q2. Are you of the opinion that Biology and Engineering domains have crosstalk? ²⁹³ responses



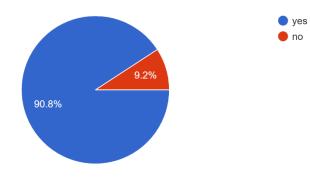
Q3. Have you realized that this course has re-framed your understanding about biological systems from engineering perspective


293 responses

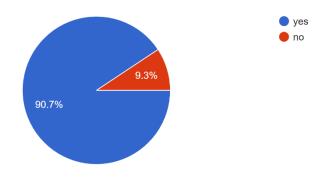
Q4. Does this course link basic biological information about to the engineering concept of molecules polymers? ²⁹³ responses

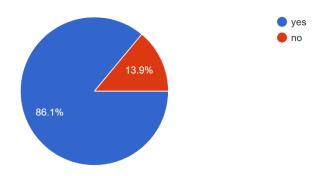


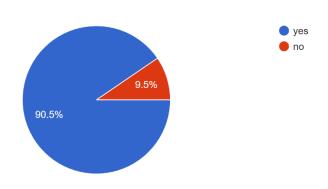
Q5. Does this course describe energy conservation optimised in biological systems through the process of photosynthesis and respiration? ²⁹² responses



Q6. Can recent advancements and technologies like genetic engineering optimise plants, animals and microorganisms


289 responses


Q7. Do you think transport, communication and defense mechanisms of living systems inspires engineering research


Q8. Could you appreciate that a part of this course offers discussion of biology related technologies in a branch specific manner ²⁹⁰ responses

Q9. Did you find branch specific assignments of this course as opportunities for updating knowledge and enhancing teamwork? 294 responses

Q10. Did you think to certain extent, basic information about biology is necessary for every engineer? 294 responses

(Indirect) CO attainment for 2018-19

Sr No	Questions mapped to CO	% attained	Target	%attained * weightage for Indirect assessment
CO-1	1, 4	88.3	60	
CO-2	2, 5	84.1	60	
CO-3	3,7	88.9	60	
CO-4	8,9	88.4	60	
CO-5	6,10	90.6	60	

(Direct) CO attainment (2018-19)

Course Outcome	Assessme	Assessment		Marks		ghtage I	Results
CO-1	Test I, ESE	Test I, ESE		30			Y
CO-2	ESE	ESE		10			Y
CO-3	ESE	ESE		10			Υ
CO-4	ESE	ESE		10			Υ
CO-5	ESE, Test		10		10		Υ
Course outcome	KDK (Comp I-II, ENTC, Meta)	MRS (Pro Mec Inst	d, ch II	MKR (Civil, Electri Mech		Total (ave	erage)
CO-1	76.4%	73.2%		71.16%		73.58%	
CO-2	69.8%	67.4%		66.33%		67.84%	
CO-3	76.43%	69.07%		74.12%		73.2%	
CO-4	66.14%	72.33%		70.21%		69.56%	
CO-5	70.8%	66.3	66.33%			68.37%	

Course Outcome Assessment

СО	Test 1	Test 2	ESE
Assessment			
CO-1	Q 1	-	Q1
CO-2	-	-	Q2
CO-3	-	-	Q3
CO-4	-	-	Q4
CO-5	-	Q 2	Q5

CO attainment (Direct and Indirect) 2017-18

CO attainment calculation with direct and indirect weightage

Со	T1+T2+ESE *	Exit survey	Final CO	Target
	0.8	responses*	attained	achievement
		0.2		60%
CO-1	73.58 X 0.8	88.3 X 0.2	72.1%	Attained
CO-2	67.84 X 0.8	84.1 X 0.2	71.09%	Attained
CO-3	73.2 X 0.8	88.9 X 0.2	76.34%	Attained
CO-4	69.56 X 0.8	88.4 X 0.2	67.83%	Attained
CO-5	68.37 X 0.8	90.6 X 0.2	72.82%	Attained